O2 adsorption dependent photoluminescence emission from metal oxide nanoparticles.
نویسندگان
چکیده
Optical properties of metal oxide nanoparticles are subject to synthesis related defects and impurities. Using photoluminescence spectroscopy and UV diffuse reflectance in conjunction with Auger electron spectroscopic surface analysis we investigated the effect of surface composition and oxygen adsorption on the photoluminescence properties of vapor phase grown ZnO and MgO nanoparticles. On hydroxylated MgO nanoparticles as a reference system, intense photoluminescence features exclusively originate from surface excitons, the radiative deactivation of which results in collisional quenching in an O2 atmosphere. Conversely, on as-prepared ZnO nanoparticles a broad yellow emission feature centered at hνEm = 2.1 eV exhibits an O2 induced intensity increase. Attributed to oxygen interstitials as recombination centers this enhancement effect originates from adsorbate-induced band bending, which is pertinent to the photoluminescence active region of the nanoparticles. Annealing induced trends in the optical properties of the two prototypical metal oxide nanoparticle systems, ZnO and MgO, are explained by changes in the surface composition and underline that particle surface and interface changes that result from handling and processing of nanoparticles critically affect luminescence.
منابع مشابه
Nanopowder Metal Oxide for Photoluminescent Gas Sensing
Gas sensing properties of metal oxide nanopowders (ZnO, TiO2, WO3, SnO2) with average diameters of 40-60 nm were analyzed by room-temperature photoluminescence spectroscopy. The influence of gas environment (O2, N2, H2, CO, CO2) on the emission intensity was investigated for metal oxide nanopowders with surface doped by impurities (Pt, Ag, Au, Sn, Ni or Cu). Established physicochemical regulari...
متن کاملPhotoluminescence quenching in compressed MgO nanoparticle systems.
Efficient use of highly dispersed metal oxides for lighting, energy conversion and catalysis requires knowledge about the impact of density and microstructure of the powders on the optical nanoparticle properties. For MgO nanocube powders we present a combined photoluminescence (PL) and electron paramagnetic resonance (EPR) approach which enables for samples of different aggregation states the ...
متن کاملIn-situ synthesis and characterization of reduced graphene oxide –Ag nanocomposites
Reduced graphene oxide(rGO)–silver(Ag) nanocomposites have been prepared by using solution based facile one-pot synthesis process. The reaction process involves high-temperature liquid-phase exfoliation of graphite oxide and silver acetate in presence of N-N’dimethylformamide (DMF) solvent, resulting in simultaneous formation of rGO as well as Ag nanoparticles. Different nanocomposites have bee...
متن کاملPhotoluminescence (PL) quenching and enhanced photocatalytic activity of Au-decorated ZnO nanorods fabricated through microwave-assisted chemical synthesis.
ZnO nanorods decorated with gold nanoparticles of ~20 nm average size were fabricated by microwave-assisted chemical synthesis. For the surface-attached growth of metal nanoparticles, the ZnO nanostructures were first functionalized by sodium citrate and then the metal ions were reduced under microwave heating. While the incorporation of gold nanoparticles at the surface seen to quench both the...
متن کاملTuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer
There is increasing interest in tuning the optical and optoelectronic properties of semiconductor nanostructures using metal nanoparticles in their applications in light-emitting and detection devices. In this work we study the effect of a dielectric Al 2 O 3 gap layer (i.e., spacer) on the interaction of ZnO nanowires with metal nanoparticles. The Al 2 O 3 spacer thickness is varied in the ran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 43 شماره
صفحات -
تاریخ انتشار 2014